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Dipolar-octupolar correlations and hierarchy of exchange interactions in Ce2Hf2O7
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High-resolution neutron spectroscopy on Ce2Hf2O7 reveals a correlated state characterized by distinct dipolar
scattering signals—quasielastic and inelastic contributions consistent with ‘photon’ and ‘spinon’ excitations
in quantum spin ice. These signals coexist with weak octupolar scattering. Fits of thermodynamic data using
numerical methods indicate a dominant octupolar exchange, Jx or Jy, with substantial dipolar Jz and minute
dipole-octupole Jxz couplings. The Jxz value is corroborated by an independent fit of the neutron scattering am-
plitude balance between dipolar and octupolar ‘photon’ contributions, highlighting its importance to understand
neutron scattering results in this family. Ce2Hf2O7 enriches the landscape of dipole-octupole pyrochlore physics,
and reveals a ‘quantum multipolar liquid’ where hybrid correlations involve multiple terms in the moment series
expansion, opening questions regarding their intertwining and hierarchy in quantum phases.

DOI: 10.1103/j451-ztvr

Multipoles in condensed matter refer to higher-order terms
of a series expansion describing distributions of electric and
magnetic charges. They originate from local arrangements of
magnetic dipoles (‘cluster multipoles’) [1–4] or elements with
unquenched orbital moments [5,6]. Strong spin-orbit coupling
can result in multipolar phases in compounds of f elements
[7–9] or heavy d elements [10,11], although experimental
verification is difficult as multipoles tend to remain hidden
for conventional scattering techniques. Long-range magnetic
structures involving these elements can lead several of the
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symmetry-allowed multipoles to order, with debates on the
nature and hierarchy of order parameters [12,13]. Liquid cor-
relations involving magnetic dipoles and electric quadrupoles
were argued in Pr2Zr2O7 based on bulk properties [14] and
inelastic neutron scattering in samples with residual disorder
[15,16]. However, directly probing correlations of different
multipoles in a liquid phase remains elusive.

In compounds of f elements, the number of exchange
parameters between spin-orbital entangled J multiplets can
be large. However, in rare-earth insulators such as pyrochlore
oxides, frustrated magnet prototypes for the quantum spin ice
(QSI) state [23–30], interactions occur on energy scales that
are small enough to involve only the ground state doublet
[31]. The local D3d symmetry in pyrochlores gives rise to
three possible kinds of ground-state doublets, depending on
the number of f electrons and crystal-electric field (CEF).
One such possibility is the ‘dipole-octupole’ doublet [21,31]
stabilized e.g. in Ce3+ pyrochlores [32,33], in which case it
is defined by any linear combination of |mJ = ±3/2〉 states.
Projection onto the subspace spanned by the two elements of
this doublet defines a pseudospin 1/2 with (sx, sy, sz ) com-
ponents [20,21,32,33]. Due to the specific transformations of
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this doublet under the local symmetries, a minimal model of
interactions is given by the XYZ Hamiltonian

Hnn =
∑

〈i j〉
Jxsx

i sx
j + Jysy

i sy
j + Jzs

z
i s

z
j + Jxz

(
sx

i sz
j + sz

i s
x
j

)

−
∑

i

(ẑi · h)gzs
z
i , (1)

where Jx, Jy, Jz, and Jxz are effective coupling strengths,
and the summation 〈i j〉 is over nearest-neighbors [21].
sz is reflected in the magnetic moment and in the dipo-
lar neutron cross section, while sx and sy are reflected in
the orbital neutron cross section and appear at large mo-
mentum transfer Q. QSI phases emerge when Jx, Jy, or
Jz is positive and dominant, leading to a manifold of ice
states, while other terms bring quantum fluctuations [21]
with the possibility of achieving tunable emergent quantum
electrodynamics [34].

Cerium pyrochlores are the focus of intense investigations
for the study of dipolar-octupolar (DO) QSI. Ce2Sn2O7 was
first studied and samples obtained by solid-state synthesis
show a correlated phase below 1 K based on thermodynamic
measurements, while muon spin relaxation excludes long-
range magnetic order down to 0.02 K [35]. Neutron scattering
experiments reveal a continuum of excitations composed of
three bands as expected for the π -flux phase of QSI [36,37],
and a strengthening of the octupolar moment explained by a
dominant Jy or Jx [19]. However, other studies using samples
prepared hydrothermally show different scattering, reminis-
cent of a spin ice regime of magnetic dipoles that would be
a proximate state to long-range antiferromagnetic order [38].
In Ce2Zr2O7, neutron scattering and single crystal specific
heat investigations concluded indicated a QSI, with Jx ∼ Jy

[17,18,39–41]. Recent attempts were made to discern the
quasielastic ‘photon’ and inelastic ‘spinon’ scatterings [42]. A
comparison of the low-temperature specific heat in Ce2Sn2O7

[19], Ce2Zr2O7 [17], and Ce2Hf2O7 [43] highlights intrinsic
differences. The relative strength of the exchange interactions
and their effects on experimental observations, as well as
sample dependencies, are central questions in this remarkable
series of materials.

Here we investigate the correlated state in Ce2Hf2O7 [43],
revealing signatures of dipolar-octupolar correlations. The
determination of the exchange couplings from fits of thermo-
dynamic data points to a DO-QSI ground state. In addition,
high resolution inelastic neutron scattering measurements
highlight a clear separation between the expected photon
bandwidth and the spinon excitations, and confirm the param-
eters of the Hamiltonian.

Specific heat data were measured using a Quantum De-
sign PPMS, in zero and finite magnetic fields up to 6 T
applied along the crystallographic [111] direction, in a tem-
perature range from 0.4 to 15 K. The lattice contribution
was subtracted using data measured for La2Hf2O7. Additional
data were taken between 0.05 and 0.8 K using a home-built
calorimeter in a dilution refrigerator and the quasiadiabatic
heat pulse method. The heater and thermometer were fixed
directly to the sample and contacts were made with 7 µm

diameter NbTi wires to minimize heat leaks. Magnetization
vs field was measured using SQUID magnetometers equipped
with a miniature dilution refrigerator developed at the Insti-
tut Néel-CNRS Grenoble [44]. Neutron powder diffraction
was performed on HRPT (SINQ) [45] using a wavelength of
1.15 Å and a powder sample in a dilution refrigerator. Inelastic
neutron scattering (INS) data were collected using a powder
sample on IN5 (ILL) using an incident energy of 0.82 meV,
providing a resolution of 11 µeV. All measurements used
samples reported in Ref. [43].

INS data integrated over low Q values reveal the pres-
ence of an inelastic signal [Fig. 1(a)], similar to the continua
of spinon excitations in Ce2Sn2O7 [19,36] and Ce2Zr2O7

[17,40,42]. Spectra were collected at temperatures inside
and outside the correlated regime. The high temperature
spectrum was subtracted to extract the imaginary part of
the generalized dynamic spin susceptibility χ ′′(E ) = [1 −
exp(−E/kBT )]S(E ), with S(E ) the magnetic dynamical struc-
ture factor [Fig. 1(b)]. The signal rapidly decreases upon
warming from 0.1 to 0.2 K, and almost vanishes at 0.4 K,
consistent with the weak energy scale in cerium pyrochlores.
The band of excitations is centered around � = 0.024 ±
0.002 meV—a significantly smaller energy compared to � =
0.039 ± 0.003 meV in Ce2Sn2O7 [19] and � ∼ 0.04 meV
in Ce2Zr2O7 [17]. The width of the inelastic signal (� ∼
0.01 meV) is sharper than in both Ce2Sn2O7 (� ∼ 0.025 meV)
and Ce2Zr2O7 (� ∼ 0.06 meV). For spinon excitations in
a QSI – magnetic monopoles endowed with quantum dy-
namics [32,33,37,46–52], the center of the band is set by
the energy scale of the dominant interaction while its width
relates to transverse couplings responsible for quantum fluc-
tuations. However, conclusions made on the basis of the
values of � and � consider a generic QSI spin-1/2 quan-
tum XYZ model [53] with dominant exchange and transverse
exchanges, which may not reflect all subtleties of the four
exchange parameters in Hamiltonian (1) [21].

Having identified excitations that possibly indicate a QSI
phase, a legitimate question arising for a ‘dipole-octupole’
pyrochlore is the nature of the underlying correlations, i.e., of
the dominant coupling. We have performed a thermal neutron
powder diffraction experiment in the same conditions as for
Ce2Sn2O7 [19], to search for octupolar correlations. The result
is shown in Fig. 1(f) together with the data previously reported
for Ce2Sn2O7 [19]. Using the same procedure for scaling in
absolute units as in Ref. [19], we found that the same type
of high-Q scattering occurs in Ce2Hf2O7 at low tempera-
ture, but with a much weaker intensity than in Ce2Sn2O7.
However, looking at the INS data [Figs. 1(c) and 1(d)], we
also observe at low Q a signal centered at E = 0, within the
instrumental resolution of ±11µeV, which we call hereafter
‘quasielastic’, and suggests the simultaneous existence of
dipolar correlations. This contrasts with INS experiments per-
formed on Ce2Sn2O7 prepared by solid-state synthesis, where
no quasielastic dipolar signal is observed and the scattering at
low Q only comprises gapped spinon excitations [19,36].

To rationalize the neutron scattering signals, we then
estimate J parameters using fits of specific heat, magneti-
zation, and susceptibility. The magnetic specific heat was
fitted using the finite temperature Lanczos method (FTLM)
[54,55] applied to the dipole-octupole QSI Hamiltonian in
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FIG. 1. (a) INS spectra measured between 0.1 and 5 K and integrated between 0.2 and 1.0 Å−1. (b) χ ′′(E ) (points with error bars),
obtained by subtracting 5 K data. Red lines are fits using a Lorentzian peak shape for comparison with previous data on Ce2Zr2O7 [17,18] and
Ce2Sn2O7 [19]. (c) Difference map of the magnetic dynamical structure factor S(Q, E ) between 0.1 and 5 K. (d) and (e) are constant energy
cuts at 0 ± 0.01 and 0.03 ± 0.01 meV energy transfers, respectively. Black and red lines on panel (d) are fits using model calculations of
“quasielastic” scattering for classical and quantum spin ice, respectively. (f) High-Q diffuse scattering obtained from the difference between
neutron diffraction patterns measured at set-point temperatures of 5 and 0.05 K. Intensities are normalized to nuclear scattering as detailed
in [19]. The red line is based on theoretical calculations assuming ice rules among mixed dipolar-octupolar wave functions (see [20] and
Refs. [21,22] therein).

Eq. (1) (see Refs. [20,40]). The g-tensor components were
initially estimated from magnetization vs field data collected
at 4 K, far from the correlated regime. The resulting gz

= 2.328 agrees with expectations from the CEF [20] and
was fixed during the optimization of J values. The zero-
field specific heat [Fig. 2(a)] shows a broad peak, centered
around 0.15 K, as typically observed in spin ice materials
[15,17,19,56–58]. Applying a magnetic field along the [111]

direction shifts the signal to higher temperatures, where two
separate contributions develop, whose positions and relative
weights are remarkably well captured by the simulations [20].
Calculations from our model were also compared with the
temperature dependence of the bulk susceptibility measured
at low field and magnetization curves measured at 0.08 K
for fields along the high-symmetry directions, as shown in
the Supplemental Material [20] (see also Refs. [15,32,43,59–

FIG. 2. (a)–(c) Magnetic contribution to the specific heat, (d) magnetization, and (e) effective magnetic moment derived from magnetic
susceptibility, with magnetic fields applied along [111]. All dots are experimental data and curves are results of the Lanczos analysis (16-sites
system) for two of the best sets of interactions. The fits a, b, and c were obtained with gz = 2.328 and (Jx , Jy, Jz, Jxz )a = (0.011, 0.044, 0.016,
-0.002), (Jx , Jy, Jz, Jxz )b = (0.020, 0.047, 0.013, -0.008) or (Jx , Jy, Jz, Jxz )c = (0.046, 0.022, 0.011, -0.005) in units of meV. (f) The log of
the two dimensional Jz-Jx cost function obtained by fixing Jy = 0.047 meV, Jxz = −0.008 meV, and gz = 2.328. The dashed curve encircles
solutions where the log of the cost function is less than -0.42, highlighting the best solutions.

L180404-3



VICTOR PORÉE et al. PHYSICAL REVIEW B 112, L180404 (2025)

61] therein), giving a relatively good agreement. The former
is shown in Fig. 2(e) using a highly discriminating plot—the
effective magnetic moment vs temperature on a logarithmic
scale, showing that the drop of dipole moment in the corre-
lated regime is reproduced for dominant octupolar couplings.
The cost function resulting from our analysis [20] is presented
in Fig. 2(f) for a dominant Jy, showing a valley of optimal
parameter sets that correspond to an octupolar QSI. Two rep-
resentative sets [labeled a and b and respectively shown as red
and violet curves in Figs. 2(a)–2(e)] are (all J values in meV)

(Jx, Jy, Jz, Jxz )a = (0.011, 0.044, 0.016,−0.002),

(Jx, Jy, Jz, Jxz )b = (0.020, 0.047, 0.013,−0.008). (2)

Importantly, dominant Jx solutions are also valid, e.g.,

(Jx, Jy, Jz, Jxz )c = (0.046, 0.022, 0.011,−0.001). (3)

These parameters are consistent with our analysis from data
measured with magnetic fields along [110] [62]. Close J
values are also reported from numerical linked cluster calcula-
tions obtained from zero-field specific heat of another crystal
[63]. In all our optimal parameter sets, either Jx or Jy domi-
nates, which contrasts with Ce2Zr2O7 where Jy ≈ Jx [39,40].
Nonetheless, our parameters correspond to the π -flux phase
of QSI [49,50,64,65], like in Ce2Zr2O7 [39,40] and solid-state
synthesized Ce2Sn2O7 [19,36]: transverse interactions lead to
J± < 0, calculated as −(Jx + Jz )/4 or −(Jy + Jz )/4, respec-
tively for Jy or Jx dominant.

The so-called ring exchange term, which is written Jring =
3(Jy + Jz )3/(16J2

x ) for a dominant Jx, defines a bandwidth
of photon excitations with an energy scale of the order of a
few µeV for our optimal parameter sets. As a result, despite
the excellent energy resolution, the details of the photon dis-
persion remain inaccessible, but are nevertheless recorded in
the “quasielastic” signal. Furthermore, these excitations are
related to spin components along the x axis of the local coor-
dinate frame, and should manifest in the orbital scattering.

At this point, it is crucial to note that our optimal parameter
sets involve a nonzero Jxz. Using a rotation by an angle θ

defined by tan(2θ ) = 2Jxz/(Jx − Jz ) about the y axis, Jxz can
be eliminated from Eq. (1) so that the actual relevant vari-
ables are “tilted” spins with nonzero projections onto both the
initial z and x directions defined in Hnn [Eq. (1)] [21,66]. As
a result, QSI correlations emerge among the x̃ spins of the
rotated frame, and project onto both z and x, hence giving
rise to both nonzero dipole and orbital neutron cross sections,
respectively. We thus expect that a minute Jxz leads to a drastic
increase in dipolar ‘quasielastic’ scattering at the expense of
octupolar scattering. This naturally explains the simultaneous
observation of the scattering displayed in Figs. 1(d) and 1(f),
which should be understood as the manifestation of the same
‘photon’ signal along x̃, seen through dipole and orbital neu-
tron cross sections, respectively.

The Q dependence of the ‘quasielastic’ dipolar scatter-
ing integrated over E = [−11, 11] µeV [Fig. 1(d)], peaking
around 0.6 Å−1 with a clear drop of intensity at lower Q, is a
signature of the quantum nature of the ground state, distinct
from classical spin ice (CSI) where constant elastic scattering
is expected at low Q. To illustrate this point, Fig. 1(d) shows

FIG. 3. Comparison of the dynamical structure factor as a func-
tion of energy and absolute momentum (a) observed [data from
Figs. 1(c) and 1(b) simulated (using parameter set a)]. The latter
was obtained from MD simulations for 1024 sites and rescaled by
βE/(1−exp(−βE )) (β = 1/kBT with kB the Boltzmann factor and
E the neutron energy transfer).

fits using analytical models of the scattering for a CSI (black
curve) and a QSI (red curve).

To further check consistency with the INS data, one of
the optimal parameter sets was used to perform a semi-
classical molecular dynamics (MD) simulation [39,40,67],
computing the energy- and momentum-resolved dynam-
ical structure factor. The resulting spectrum displays a
continuum of excitations centered around 0.021 meV, in
agreement with the experiment (Fig. 3), and interpreted
as arising from QSI spinons. The high energy resolution
was here crucial to disentangle the dipolar ‘quasielastic’
photon signal [Fig. 1(d)] from the inelastic spinon signal
[Fig. 1(e)]. To illustrate the dramatic influence of the θ

angle induced by Jxz and independently check our FTLM
results, we analyze the data obtained with thermal neutrons
shown in Fig. 1(f) over the entire Q range. We intro-
duce a single variable φ as a continuous parametrization
of the doublet, using |φ〉 = cos φ|mJ = +3/2〉 + sin φ|mJ =
−3/2〉 and |φ̄〉 = − sin φ|mJ = +3/2〉 + cos φ|mJ = −3/2〉.
φ = 0 and π/4 respectively describe a purely dipolar and
octupolar doublet. We assume ice-like correlations, i.e., two-
|φ〉-two-|φ̄〉 on each tetrahedron, and calculate the dipole
and orbital cross sections using both dipolar and octupo-
lar magnetic form factors, see Supplemental Material [20]
and Refs. [19,68–70] therein. We then estimate φ from the
comparison with the experiment. The optimal value φopt =
±0.264 π indicates a mixed dipolar-octupolar character, yet
dominated by octupoles. Deviations from φopt significantly
alter the amplitudes of dipolar and octupolar ‘photon’ scatter-
ing, demonstrating the high sensitivity to the wave function’s
composition. Translating φopt into θ , to ensure compari-
son with parameters from works on Ce2Zr2O7 [39,42] and
Ce2Sn2O7 [38], gives θopt = ±0.028 π . Remarkably, this in-
dependent analysis agrees well with our FTLM results giving,
e.g., θ = −0.091π for parameter set (c) of Eq. (3). Although
the absolute values of the two fittings are different by a fac-
tor of 3, we note that the agreement is actually very good:
given the range of θ is from 0 to π (±θ are indistinguish-
able), the two independent fittings agree within a window of
(0.028π − 0.0091π )/π = 1.9% of the entire possible range
of θ . Physically, this suggests a dominant Jx � Jz, and a very
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small Jxz, that is, the spin liquid is a mixture of dipole and oc-
tupole moments, with the octupole moments being dominant.

Observing dipolar and octupolar signals in Ce2Hf2O7 in-
forms us directly about the dual nature of the degrees of
freedom forming the spin liquid state. Interestingly, a mixed
dipolar-octupolar ground state is also proposed in Nd2Zr2O7

[71,72]. In this particular case, the cos θ projection factor
naturally explains the strong reduction of the long-range all-
in-all-out order parameter. In the present study, however, this
dual nature is directly evidenced by the observation of both
the dipolar and octupolar signals.

In summary, our analysis suggests that Ce2Hf2O7 is a π -
flux QSI characterized by correlations among both dipoles
and octupoles. Fine-tuning of Jxz is crucial to make them
observable both in the respective dipolar and orbital neutron
cross sections. Consistent with theoretical expectations, the
spinon continuum appears in the dipolar channel above a
small gap that could be evidenced thanks to high resolution
neutron data. While examples of long-range multipolar order-
ing have been reported in literature [12,13], our work suggests
that Ce3+pyrochlores constitute a unique example of quan-
tum liquids involving such correlations of distinct multipoles,
opening the way to novel promising studies.
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